Exercise 26

A trough is 10 ft long and its ends have the shape of isosceles triangles that are 3 ft across at the top and have a height of 1 ft . If the trough is being filled with water at a rate of $12 \mathrm{ft}^{3} / \mathrm{min}$, how fast is the water level rising when the water is 6 inches deep?

Solution

Start by drawing a schematic of the trough at a certain time.

Write an equation for the line representing the triangle's edge.

The aim is to find the volume $V(y)$ that water occupies if it's at a height y. In order to do this, find the area of a cross-section and then multiply it by 10 feet, the thickness.

This is the area of a triangle.

$$
\begin{aligned}
A & =\frac{1}{2}(2 x) y \\
& =x y
\end{aligned}
$$

Since we want to find $d y / d t$ when $y=0.5$, eliminate x in favor of y.

$$
\begin{aligned}
A & =\left(\frac{3 y}{2}\right) y \\
& =\frac{3 y^{2}}{2}
\end{aligned}
$$

Multiply the area by the thickness, 10 feet, to get the volume.

$$
\begin{aligned}
V & =10 A \\
& =10\left(\frac{3 y^{2}}{2}\right) \\
& =15 y^{2}
\end{aligned}
$$

Take the derivative of both sides with respect to t by using the chain rule.

$$
\begin{aligned}
\frac{d}{d t}(V) & =\frac{d}{d t}\left(15 y^{2}\right) \\
\frac{d V}{d t} & =30 y \cdot \frac{d y}{d t} \\
12 & =30 y \frac{d y}{d t}
\end{aligned}
$$

Solve for $d y / d t$.

$$
\frac{d y}{d t}=\frac{2}{5 y}
$$

Therefore, the rate that the water level is rising when the water is 6 inches (0.5 feet) deep is

$$
\left.\frac{d y}{d t}\right|_{y=0.5}=\frac{2}{5(0.5)}=\frac{4}{5}=0.8 \frac{\mathrm{ft}}{\mathrm{~min}} .
$$

